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In an ensemble of noninteracting Brownian particles, a finite systematic average velocity may temporarily
develop, even if it is zero initially. The effect originates from a small nonlinear correction to the dissipative
force, causing the equation for the first moment of velocity to couple to moments of higher order. The effect
may be relevant when a complex system dissociates in a viscous medium under strongly nonequilibrium
conditions.
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I. INTRODUCTION

Stochastic processes with nonlinear dissipation are ubiq-
uitous and challenging to describe theoretically. Mathemati-
cal difficulties related to the nonlinearity of a corresponding
stochastic differential equation are only part of the problem.
A more subtle challenge is to establish fluctuation-dissipation
relations which, in contrast to linear processes, cannot be
phenomenologically justified �1�. Instead, a truly dynamical
approach is usually needed when the dissipation force and
statistical properties of the noise are deduced directly from
underlying dynamics, rather than postulated ad hoc. Conven-
tional assumptions of a phenomenological approach in the
context of nonlinear response may be misleading. For in-
stance, the assumption of Gaussian random force in the
Langevin equation leads to the Fokker-Planck equation of
second order, regardless of whether the dissipation force is
linear or not. On the other hand, a kinetic approach leads to
the second-order Fokker-Planck equation for a Brownian
particle only in the lowest order of a perturbation technique,
while in general the equation involves derivatives of order
higher than 2 �1–4�.

Nonlinear stochastic processes are usually associated with
far-from-equilibrium dynamics. If a system is close to equi-
librium, nonlinear dissipation usually appears as small cor-
rections to the dominating linear friction and in many cases
may be safely neglected. However, under certain circum-
stances, the contribution of linear terms may vanish identi-
cally or be strongly reduced. Then nonlinear dissipative ef-
fects come into the limelight and give rise to a variety of new
physical effects.

An example, which has received particular attention in
recent years, is the rectification of thermal fluctuations in the
so-called adiabatic piston problem �5�. The problem concerns
Brownian motion of a piston which separates a gas-filled
cylinder into two compartments with different temperatures
and gas densities. If the pressure on both sides of the piston
is the same, the linear theory predicts zero average velocity
of the piston, while the correct result is that the piston ac-
quires a systematic average speed in the direction of the
compartment with higher temperature. The effect may be
readily explained using the Langevin equation with a small
nonlinear correction, quadratic in the piston’s velocity, to the
dissipative force �6�. The effects of nonlinear friction on the
Kramers relaxation rate were studied recently in �7�, and in

the context of rectification of thermal fluctuations in �8�. The
aim of this paper is to draw attention to another problem—
perhaps the simplest one—where nonlinear corrections to the
dissipative force are essential and lead to a result qualita-
tively different from predictions of the linear response
theory.

II. THE PROBLEM

Consider an ensemble of noninteracting Brownian par-
ticles diffusing in one dimension. The particles are identical
but may have different initial velocities. Suppose the distri-
bution of initial velocities f0�V� is similar to Fig. 1: it is
asymmetric but in such a way that the average initial velocity
of the ensemble is zero,

�V�0�� =� dVf0�V�V = 0. �1�

The question is whether �V�t�� for later time t�0 is positive,
negative or zero?

Contrary to its apparent simplicity, the question requires
going beyond the standard theory of Brownian motion based
on the linear Langevin equation and the corresponding
second-order Fokker-Planck equation. Both approaches give
the linear relaxation law �t�V�t��=−��V�t��, and therefore
predict that if the average velocity �V�t�� is zero initially, it
remains so later on. The prediction is incorrect as one can see
from the result of numerical experiment presented in Figs. 2
and 3. On the time scale of order �=1/�, a finite average
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FIG. 1. Initial velocity distribution for an ensemble of Brownian
particles, discussed in the paper. The widths and heights of the
distribution’s wings are chosen so that the average initial velocity
�V� of the ensemble is zero, but the higher moments �Vn� are finite.
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velocity develops in the direction corresponding to the
higher, narrower wing of the initial distribution, the right
wing in Fig. 1. The particles moving to the right, have lower
average initial speeds but are more numerous and give a
larger contribution to �V�t�� than the particles moving to the
left. The victory of the larger team of slower runners does
not last very long: after reaching a peak at roughly one-half
of �, the function �V�t�� decays exponentially with the char-
acteristic time of order �. Yet, this transient time may be
sufficiently long to cause measurable physical consequences.

The problem may be considered as a strongly idealized
model of the dissociation of a complex system in a viscous
medium. As will be shown, the effect may be significant only
under nonequilibrium conditions when the initial energies of
the particles are much higher than kT. This is a typical situ-
ation for many phenomena, including chemical reactions, the
Coulomb fragmentation of multiply charged clusters and
droplets, and processes involving fragmentation of complex
molecular aggregates. If the system is initially at rest and all
dissociated fragments have the same mass, Eq. �1� is just the
condition of conservation of total momentum. For a system

in vacuum, the speed of the center of mass of fragments
remains zero after dissociation. However, if dissociation hap-
pens in a viscous medium, the average velocity is tempo-
rarily finite, and the center of mass changes position even if
the fragments are identical and have the same diffusion co-
efficients.

To account for this transient drift effect, one must take
into account that the equation for the first moment of the
velocity �t�V�t��=−��V�t�� is closed only in lowest order in
the small parameter �2=m /M, the mass ratio of a molecule
�m� to a Brownian particle �M�. At higher orders in �, the
first moment �V�t�� is coupled to the moments of higher or-
ders �Vn�t��. If initially the first moment is zero, but the
higher moments are finite, as for the initial distribution in
Fig. 1, then �V�t���0 for t�0. To describe the problem
quantitatively, one may adopt the approach based on either
the Langevin equation for V�t� or the Fokker-Planck equa-
tion for the distribution function f�V , t�. In what follows, we
discuss both approaches and outline details of the numerical
simulations presented in Figs. 2 and 3.

III. THEORY: LANGEVIN EQUATION

The microscopic derivation of the Langevin equation be-
yond the lowest order in �=�m /M was discussed in �10,11�.
Here we outline the results and apply them to our problem.
An appropriate perturbation technique is guided by anticipa-
tion that the velocity V of a Brownian particle is typically
about � times that of a molecule of the surrounding bath.
This suggests working with the scaled velocity of the particle
v=�−1V, which is expected to be of the same order as the
thermal velocity of molecules vT,

v = �−1V 	 vT =�kT

m
. �2�

The microscopic equation of motion for the scaled velocity
v=V /� �or for the scaled momentum p=mv=�MV� involves
the small parameter � explicitly, and therefore is convenient
for a perturbation analysis. The equation is coupled with bath
degrees of freedom which may be “projected out” with an
appropriate projection operator technique �9–11�. As a result,
to lowest order in �, one obtains the conventional linear
Langevin equation

v̇�t� = − �2�0v�t� +
�

m
F0�t� , �3�

where the zero-centered fluctuating force F0�t� is related to
the dissipation constant �0 through the fluctuation-
dissipation relation

�0 =
1

mkT
�

0

�

dt�F0�0�F0�t�� . �4�

The linear Langevin equation �3� leads to the following
equations for the velocity moments �12�

FIG. 2. Simulation �solid� and theoretical �dashed� curves for
the time dependence of the average velocity �V�t�� of an ensemble
with an initial distribution similar to Fig. 1. The molecule-particle
mass ratio parameter is �=�m /M =0.1. The widths of the distribu-
tion wings are V1=1/4 and V2=1/2. Velocity is in units vT

=�kT /m and time is in units �= ��2�0�−1.
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FIG. 3. Same as for Fig. 2, but for an initial velocity distribution
with widths V1=1 and V2=2 �in units vT� for the right and left
wings, respectively. The corresponding ensemble is far from equi-
librium, V1, V2��. The theoretical �dashed� curve, given by Eq.
�16� overestimates the result of the simulation �solid curve�.
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d�vn�
dt

= − �2n�0�vn� + �2n�n − 1��0vT
−2�vn−2� . �5�

As discussed, these equations, obtained in lowest order in �2,
are not sufficient for our purpose: the closed equation for the
first moment �t�v�=−�2�0�v� clearly cannot account for the
behavior presented in Fig. 2.

The next approximation for the Langevin equation in-
volves a correction of order �4 and, for a homogeneous bath,
has the form �10,11�

v̇�t� = − �2�1v�t� − �4�2v
3�t� +

�

m
F�t� . �6�

Besides the presence of the nonlinear dissipative term
−�4�2v3, this equation differs from the linear one �3� by a
higher order correction to the linear damping, and the fluc-
tuating force

�1 = �0 + O��2�, F�t� = F0�t� + O��� . �7�

The explicit form of these corrections is not necessary for the
purpose of this paper. The fluctuation-dissipation relation for
the nonlinear dissipation coefficient �2 involves rather com-
plicated correlation functions �11�, and to the best of our
knowledge, cannot be established phenomenologically. This
is in contrast to the conventional fluctuation-dissipation rela-
tion �4� for the linear dissipation coefficient �0 which can be
obtained using the prediction of equilibrium statistics
�v2�t��→kT /m in the long time limit.

Since the fluctuating force is zero-centered to any order in
�, it follows from Eq. �6� that to order �4 the first moment is
coupled to the third one,

d

dt
�v� = − �2�1�v� − �4�2�v3� . �8�

One must substitute here �v3�t�� obtained in the lowest order
in � which according to �5� satisfies the equation

d

dt
�v3� = − 3�2�0�v3� + 6�2�0vT

−2�v� . �9�

Our interest is the solution of Eqs. �8� and �9� with the initial
conditions

�v�0�� = 0, �v3�0�� � 0. �10�

Clearly, in this case �v�t��	�2, so that the last term in the
Eq. �9� can be neglected. Then, to order �2, the third moment
decays exponentially �v3�t��= �v3�0��e−3�2�0t. Substituting
this into Eq. �8� and recalling that �1=�0+O��2�, one obtains

�v�t�� = − �2 �2

2�0
�v3�0��e−�2�0t�1 − e−2�2�0t� . �11�

Recall also that v is the scaled velocity, v=V /�. For the true
velocity V the result formally does not involve the small
factor �2,

�V�t�� = −
�2

2�0
�V3�0��e−�2�0t�1 − e−2�2�0t� . �12�

However, one should keep in mind that the whole procedure
applied above implies that V	�vT. This puts a constraint on
the width � of the initial distribution f0�V�,

� � �vT. �13�

Under this constraint �V3�0�� is small and cannot exceed or-
der �3vT

3.
For a far-from-equilibrium ensemble the above theory,

strictly speaking, is not applicable. Yet, as one observes from
Fig. 3, Eq. �12� predicts qualitatively correct behavior also
for a “hot” initial distribution with �	vT. In these cases the
first moment given by Eq. �12� is not small, �V�t��	�0.

According to the result �12�, the first moment �V�t��
reaches the maximum at time t0= �ln 3 /2��
0.55� where �
=�−2�0

−1, which is seen in Fig. 2 to be in agreement with
numerical simulation. To make more qualitative predictions,
one needs an explicit expression for the ratio of the dissipa-
tive coefficients �2 /�0, which is the prefactor in Eq. �12�.
Since a general result for this ratio is unknown, in the rest of
the paper we discuss a specific model of Brownian motion—
the Rayleigh model—for which our numerical experiment is
carried out, and for which analytical results are available.

In the original Rayleigh model �2–4�, a heavy Brownian
particle moves in one dimension interacting with bath mol-
ecules through instantaneous elastic collisions, while mol-
ecules do not interact with one another at all. For this model
the Fokker-Planck equation for the distribution function
f�V , t� can be readily obtained, as will be discussed in the
next section. However, due to the singular character of the
hard-wall potential, the derivation of a nonlinear Langevin
equation for the original Rayleigh model is not quite straight-
forward. One may instead work with a generalized Rayleigh
model where the particle interacts with molecules through a
continuous repulsive potential. For a low density of bath
molecules �when multiple collision are negligible� and for
the time scale longer than the collision time �c, the original
and generalized models are expected to give the same results.
Using the generalized Rayleigh model, one obtains the fol-
lowing explicit expressions for the dissipative coefficients
�11�:

�0 =
8

�2�
nSvT, �2 =

4

3�2�
nSvT

−1. �14�

Here n is the concentration of molecules, S is the particle’s
cross section, and vT=�kT /m is the thermal velocity of mol-
ecules in the bath. It is tempting to assume that the relation

�2

�0
=

1

6
vT

−2 =
m

6kT
, �15�

which follows from �14�, is in fact general but we leave this
conjecture for further studies. Substituting �15� into Eq. �12�,
one finally obtains
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�V�t�� = −
m

12kT
�V3�0��e−�2�0t�1 − e−2�2�0t� . �16�

Subsequently, the average displacement of the ensemble is

�X� = �
0

�

dt�V�t�� =
1

18

1

�0�2vT
2 �V3�0�� . �17�

The result �16� for �V�t��, presented in Fig. 2 by dashed
lines, is in good agreement with numerical simulation as
long as the constraint �13� on the initial distribution is satis-
fied. Before discussing details of the simulation, let us derive
the results using the language of the Fokker-Planck equation.

IV. THEORY: FOKKER-PLANCK EQUATION

For the original Rayleigh model, which involves only bi-
nary particle-molecule collisions, the Fokker-Planck equa-
tion can be readily obtained using the Kramers-Moyal ex-
pansion of the master equation �2–4�. To order �2, the
equation has a familiar form

�f�v,t�
�t

= �2�0D2f�v,t� , �18�

where the second-order differential operator D2 reads

D2 =
�

�v
v + vT

2 �2

�v2 �19�

and �0 is given by �14�. This equation corresponds to the
linear Langevin equation �3� and produces Eq. �5� for the
moments �vn�t�� to order �2. The equation of order �4 has the
form �2,4�

�f�v,t�
�t

= �2�0D2f�v,t� + �4�0D4f�v,t� , �20�

where the fourth-order differential operator D4 reads

D4 = −
�

�v
v +

1

6
vT

−2 �

�v
v3 − 2vT

2 �2

�v2 +
3

2

�2

�v2v2 +
8

3
vT

2 �3

�v3v

+
4

3
vT

4 �4

�v4 .

For the first moment, Eq. �20� gives the following equation:

d

dt
�v� = − �2�0�1 − �2��v� −

1

6
�4�0vT

−2�v3� . �21�

Recalling the relations �7� and �15�, one observes that the
above equation is equivalent to Eq. �8� derived from the
nonlinear Langevin equation. Therefore, the Fokker-Planck
equation �20� gives the same results as the nonlinear Lange-
vin equation �6�. Note, however, that the Langevin equation
�6� is derived directly from the Liouville equation �11� and is
more general than the Fokker-Planck equation �20�, which is
obtained under the assumption of instantaneous binary colli-
sions. In a general case, the �4-order Fokker-Planck equation
has additional terms which disappear in the limit of instan-
taneous collisions �14,15�.

V. SIMULATION

In our molecular dynamics simulation, we use the gener-
alized Rayleigh model in which the Brownian particle moves
in one dimension interacting with molecules through a finite-
range repulsive parabolic potential, while molecules do not
interact with one another. In this model, discussed in detail in
�11�, the particle-molecule collision time �c is finite and does
not depend on the velocity of the molecule. A characteristic
parameter of the model is N=nSvT�c, which is an average
number of molecules simultaneously interacting with the
particle. In simulation, the linear molecular density nS was
chosen to make N of order 1. In this case, multiple particle-
molecule collisions are rare, and one can expect that the
result should be close to that for the original Rayleigh model
with instantaneous binary collisions.

To mimic unbounded diffusion of a particle, we have used
two sources of molecules located far from the particle that
generate a bath with a Maxwellian velocity distribution and a
constant density. The first condition is easily accommodated
by selecting incoming molecule velocities from the distribu-
tion,

	�v� =
nSv

vT
�2�

exp�− v2

2vT
2 � , �22�

while controlling the rate of molecule generation with a Pois-
son process is one possibility that is consistent with the sec-
ond condition. With such a velocity distribution, the total
flux at each source is 
=0

�	�v�dv=nSvT /�2�. The Poisson
distribution for the period between molecule injections is
then P���=exp�−
t�, which will maintain an average linear
density of nS around the particle.

An ensemble of particles is emulated by performing mul-
tiple runs, resetting the system between each run with the
new particle initial conditions selected from the appropriate
distribution functions, and averaging the results of all runs
together. For a symmetric velocity distribution function
f0�v�, the simulation reproduced familiar results of linear
Brownian motion including the exponential decay of the ve-
locity correlation function on a time scale t��c and devia-
tion from exponential form for t��c, which is in agreement
with the theory developed in �11�.

Consider now an asymmetric initial distribution such as
that shown in Fig. 1. Let x=V /vT be the dimensionless ve-
locity of the particle. Also let x1 ,x2 be the widths and c1 ,c2
be the heights of the right and left wings of the distribution
f0�x�, respectively. The conditions of normalization
dxf0�x�=1 and of zero first moment dxf0�x�x=0 give

c1x1 + c2x2 = 1, c1x1
2 − c2x2

2 = 0 �23�

and, therefore,

c1 =
x2

x1

1

x1 + x2
, c2 =

x1

x2

1

x1 + x2
. �24�

The theoretical prediction is given by Eq. �16�,
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�x�t�� = − 1
12�x3�0��e−t/��1 − e−2t/�� , �25�

where �= ��2�0�−1, and the initial third moment, according to
�24�, equals

�x3�0�� =
x1x2

4
�x1 − x2� . �26�

Recall that the theory outlined in the preceding sections
applies under the close-to-equilibrium constraint �13�, which
requires that x1 and x2 must be of order � or less. Note that
for small �, this condition is not easy to satisfy in simulation.
Since �x�t��	�x3�0����3, one needs a very large number of
runs �larger than �−6� to average out fluctuations and find the
function �x�t�� with reasonable precision. On the other hand,
a strongly nonequilibrium ensemble with the initial distribu-
tion widths x1 ,x2	1 is easier to simulate since in this case
�x�t��	1, which requires a relatively small number of runs.

The simulation has been performed for �=0.1, N
=nSvT�c=1, time step �t=0.1�c, and various parameters of
the initial two-wing distribution f0�x� in Fig. 1. Time in Figs.
2 and 3 is given in units of velocity correlation time �
= ��2�0�−1 which, according to �14�, is related to the collision
time �c by �c /�= �8/�2���2N.

Figure 2 corresponds to the initial velocity distribution
f0�x� with left and right maximum velocities x1=1/4 and
x2=1/2, respectively. This is a close-to-equilibrium en-
semble, x1 ,x2	�. For this case, Eqs. �24� and �26� give c1
=8/3, c2=2/3, and �x3�0��=−1/128. As discussed above,
this case requires a large number of runs to minimize relative
fluctuations. The presented plot �solid line� is the average
over about 5�107 runs. Despite still visible fluctuations, the
data and theoretical prediction �16� are clearly in good agree-
ment.

Figure 3 corresponds to the distribution with maximum
velocities x1=1 and x2=2. In this case, c1=2/3, c2=1/6, and
�x3�0��=−0.5. The corresponding ensemble includes “hot”
Brownian particles with initial velocities x�� �V��vT�, so
that the major assumption of the theory is not satisfied. It is
not surprising then that in this case the theoretical prediction
�25� distinctly overestimates the simulation curve. Qualita-
tive theory for a strongly nonequilibrium ensemble remains a
challenge.

VI. CONCLUDING REMARKS

In this paper we considered a simple diffusion phenom-
enon which originates from nonlinear dissipation and re-
quires description beyond the level of the linear response
theory. Namely, for an initial distribution with zero mean
velocity but nonzero third moment �V3�0��, an ensemble of
Brownian particles temporarily acquires a finite mean veloc-
ity of order �V3�0�� /vT

2, where vT is the thermal speed of the
bath molecules. Close to equilibrium the effect is very small:
for �V3�0��	�3vT

3, the net displacement of the ensemble �X�,
according to Eq. �17�, is linear in � and is negligible for all
reasonable parameters. On the other hand, under nonequilib-
rium conditions, when initial energies of the particles are
much higher than kT, the effect is not necessarily small. For

instance, if �V�0�3�	�0, the displacement decreases with the
mass ratio, �X�	�−2, and may be comparable with the other
characteristic lengths of the problem. Nonequilibrium condi-
tions are relevant, for instance, in the context of the Kramers
problem of the escape from a deep potential well when a
particle must acquire energy considerably higher than kT to
pass over the barrier. It was shown recently in �7�, that in this
case nonlinear dissipation effects may be of considerable im-
portance. However, we have found, quite expectedly, that for
strongly nonequilibrium initial conditions the theory is con-
sistent with numerical simulations only qualitatively.

The nature of the effect discussed in this paper is quite
obvious. Referring to the distribution in Fig. 1, one notices
that although the average speed of left-moving particles
�with v�0� is initially the same as that of right-moving par-
ticles �with v�0�, the value of the third velocity moment is
higher for the former. Thus, the left-moving particles slow
down faster due to the presence of the nonlinear friction term
−�2v3, and the net drift is positive. However, let us note that
despite its simplicity, the problem requires a rather delicate
treatment. The results follow immediately from the nonlinear
Langevin equation �6�, but this equation requires micro-
scopic derivation and cannot be obtained, to the best of our
knowledge, via the phenomenological theory of nonlinear
Brownian motion �13�. One nontrivial feature of the Lange-
vin equation �6� is that the fluctuating force is non-Gaussian.
As a consequence, the corresponding Fokker-Planck equa-
tion �20� contains velocity derivatives of order higher than 2.
Although Eq. �20� in general does not preserve positivity of
the solution, it is found to give a consistent description of the
problem. In particular, its stationary solution is Maxwellian,
as one can immediately verify. Note that this comforting
property holds also in higher orders in �, at least for the case
of instantaneous binary collisions �3,4� �although in general
the situation seems less clear �15��.

The key parameter in the problem is the nonlinear dissi-
pation coefficient �2. It can be expressed in terms of rather
complex correlation functions of the fluctuating force. We
are able to calculate it explicitly only for the Rayleigh model
where hydrodynamic effects are completely ignored. Note
however, that the expression for the average velocity �12�
involves �2 in the combination �2 /�0. One might speculate
that in the general case the ratio �2 /�0 does not differ too
much from the relation �15� obtained for the Rayleigh model.
With this assumption, one can apply the results for the case
of diffusion in a medium with finite viscosity, estimating the
velocity relaxation time �=1/�2�0 from the Stokes-Einstein
relation D= �kT /M��=�2vT

2�. If �V3�0��	vT
3, then Eq. �17�

gives the ensemble’s displacement as �X�	0.1�vT

	0.1�−2D /vT. For the diffusion coefficient D	10−5 cm2/s
�a small molecule in water�, vT	104 cm/s, and the mass
ratio �2=10−4, one estimates �X�	10 nm, which is the char-
acteristic length scale for many processes including chemical
reactions and transport in membrane channels.
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